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A problem of optimal observation arising in control under conditions of uncertainty is considered. The problem is to secure 
information about the output signal of a dynamical system when the initial state is incompletely defined, by processing incomplete 
and inaccurate measurements of its states in operation. The problem is investigated for three types of interference in the measuring 
instrument. Methods for constructing a posteriori and positional solutions are described. The results are illustrated by the example 
of the observation of a fourth-order dynamical system. © 2004 Elsevier Ltd. All rights reserved. 

With the growing complexity of controlled objects and the increased demands made on the quality of 
control systems, the dimension of the mathematical models used in the theory of controllable systems 
is increasing steadily. Under such conditions, a priori information about the initial values of many phase 
variables is frequently known with limited accuracy, and available measuring instruments may measure 
- inaccurately - only some output signals of the physical system. On the other hand, only some of the 
phase variables may be of interest for control purposes. When a dynamical system is to be controlled 
in that situation, one may be obliged to use feedback based on the output rather than feedback based 
on the state. Since the output signals are measured with limited accuracy, feedback control involves a 
problem of observation: how to process the accessible measurements in order to derive information 
about the variables of interest. 

In observation theory one uses set-theoretic and probability-theoretic models of uncertainty. Problems 
of optimal observation with set-theoretic models were first formulated and solved by N. N. Krasovskii 
[1]. Similar problems were subsequently investigated by others [2-4]. For the stochastic theory of 
observation (filtering theory) one can consult the monograph edited by Leondes [5]. 

This paper is related to previous research in which we were involved [6-9]. Its aim is to describe a 
constructive method for solving the problem of optimal conditionally-relative observation [7-9], 
taking into account three classes of interference in the measuring instrument. Our main attention will 
be devoted to an algorithm for the operation of an optimal estimator, which computes in real-time 
instantaneous estimates of the output signal of a dynamical system. This enables the results to be used 
for real-time control of systems with uncertainty. 

1. A P O S T E R I O R I  A N D  P O S I T I O N A L  O B S E R V A T I O N  

Consider a dynamical system, a mathematical model of whose behaviour in a time interval T = It., t*], 
_oo < t.  < t* < oo is described by the equation 

= A ( t ) x  (1.1) 

where x = x( t )  is the n-vector (column) of the state of the system at time t: A ( t )  ~ Rn × n, t ~ T, is a 
piecewise-continuous n x n matrix-valued function. 
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We shall assume that the initial state x ( t , )  is not known exactly but in the form 

x ( t , )  = x o + Go) 

where x0 is a known n-vector, G = (g(i), i e I = {1, 2, . . . ,  n}) is an n x n0~ matrix (g(i) is its ith row) and 
co is an n,~-vector of unknown parameters belonging to a bounded set 

f~ = {o)~ R % : d .  < o ) < d  *} 

The set f~ characterizes the a priori uncertainty in the behaviour of system (1.1); we will call it the 
a priori distribution of parameters of the initial state. Corresponding to it is the a priori distribution 
X0 = x0 + Gf~ of the initial state x( t , ) .  Note that we are considering here a parallelepiped set only in 
order to simplify the following arguments; the results may be extended to the case of an arbitrary 
polyhedral set. 

Let us assume that in relation to some control problem we are interested in information about the 
output signal of system (1.1): 

z ( x , )  = H x ( x , )  

where z ,  ~ Tis a given instant of time, H = (hj, j ~ i )  is a given m × n matrix and hj is i tsj th column. 
The a priori distribution of the output signal is defined as the set Z = HXx,, where X~, = x0(x,) + ~('c,)f2 
is the a priori distribution of the state x (x , )  of system (1.1), Xo(t), t ~ T, is a trajectory of system (1.1) 
with initial s ta tex( t , )  = x0 and ep(t), t ~ T, is an n × n0~ matrix-valued function, which is the solution of 
the equation 

= A ( t ) ~ ,  ~ ( t , )  = G (1.2) 

If n~0 < n, m < n, "c, = t ,  and the matrices G and H have the form 

= n~ x n~, = Rrn x (n - m)) G ( E ~  R ; OE R(n-n'o)×n•) ', H ( E ~  mxm R ; 0 ~  

(the prime denotes transposition), then the first n~ coordinates of the initial state of system (1.1) are 
unknown, and the information about the first m coordinates of the initial state is of interest. 

To reduce the a priori uncertainty of the vectors co, x( t , ) ,  z, we carry out an observation of system 
(1.1), processing signals y( t , ) ,  y ( t ,  + h) . . . .  , y(t*) recorded at discrete times t c Th = {t,, t ,  + h, . . . ,  
t*} (h = (t* - t , ) /N,  where N is a natural number) from a measuring instrument 

y = c'( t)x + ~ (1.3) 

where c(t), t ~ T, is a known continuous n-vector function. 
The device (1.3) measures, with an error ~, one combination Cl(t)xl + ... + Cn(t)xn(t) of components 

of the vector x. The measurement-error function ~ = ~(t), t ~ T is piecewise-continuous and satisfies 
the inequalities 

~ ,  < ~ ( t ) < ~ * ,  t e  T h (1.4) 

in which the numbers {. ,  {* characterize the precision of measurement. 
The problem of observation is to obtain information about the actually produced output signal z by 

processing the a priori information Z and the measurement results. 
We will distinguish between the problems of a posteriori and positional observation. The problem 

of a posteriori observation is solved after all measurements have been carried out; the time spent on 
solving it is immaterial. The problem of positional observation is solved while the measurements are 
in progress and is aimed at obtaining real-time information about the vector z based on the current 
measurements. When the positional observation problem is being solved, the time needed to construct 
estimates of the vector z plays a decisive role. The problems of a posteriori and positional observation 
are dual analogues of the problems of programmed and positional control. 

2. O P T I M A L  O B S E R V A T I O N  P R O B L E M  

Lety( ' )  = (y(t), t ~ Th) be the collection of all measurements performed. 
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Definition. The set fi = (2 (t*; y(')) is called the a posteriori distribution of parameters of the initial 
state 0~ corresponding to a terminal position (t*; y(.)) if it consists of precisely those vectors (o e g~ to 
which there correspond initial states x ( t , )  = Xo + Go) that are capable, with certain possible {(t), 
t ~ Th, of producing the signaly(-). The elements co e (~ will be called (a posteriori) possible values of 
the parameters of the initial state. 

Corresponding to the set ~ are a posteriori distributions 

Y(o = 2o(t*; y(-)) = x o + G~,  2 = Z(t*; y( . ) )  = H(xo(Z , )  + ~( '~ , )~ )  

of the initial state and the output signal. The set X0 was used in [2, 3], but with different names. 
For some problems of optimal control with guarantee [10], one is interested not in the entire set Z0, 

but only in certain estimates (numerical characteristics) of it. Accordingly, following the approach in 
[6], we define the optimal a posteriori observation problem to be the extremal problem (q is a given 
m-vector, Ilql[ = 1) 

6((t*; y( . ) )  = q'z°(t*; y( . ) )  = maxq'z, z ~ 2 (2.1) 

The vector z ° = z°(t*;y(.)) (the extremal output signal) and the corresponding estimate h = &(t*;y(-)) 
will be called an a posteriori solution of the optimal observation problem (2.1) (or a solution of the 
optimal a posteriori observation problem). 

We will now formulate the optimal positional observation problem. Suppose z ~ Th is an arbitrary 
instant of time, yx(.) = (y( t . ) ,  y ( t .  + h), . . . ,  y(x)) is a sequence of measurements taken up to that time 
and Y('0 is the set of all possible signals y~(-). The set fi(x) = (2 (x, yx(')) will be called the actual 
distribution of parameters of the initial state for the position (z, yz(')); corresponding to it are actual 
distributions of the initial state and the output signal 

.~0(X) = X0(I:; yx(')) = x 0 + G~(I:) 

Z(I:) = Z(x; yx(.)) = H(Xo('C,) + ~('1:,)~('~)) 

The family of problems 

6t(x) = maxq'z, z ~ ;~(x) (2.2) 

which depend on the signal y~(') ~ Y('~) and the time ~ ~ Th will be called the problem of optimal 
positional observation. 

A solution of this problem (the positional solution of the optimal observation problem (PSOOP)) 
is defined as the functionals 

o)°(x, yx(-)), x°(x, yx(.)), z°(x, y~(.)), 6t(x, Yx(')), Y~(') ~ Y(X), "t ~ T h (2.3) 

satisfying the relations 

x°( ~, Yd')) = Xo + Gofl(x, y~(-)), z°(x, y~(.)) = H(xo(X, )  + O(x, )~°(x ,  y~(.))) 

&(l:,y~(.)) = q'z°(x, y~(.)) = maxq'z, z ~ 2(x)  

Clearly, a PSOOP consists of previously prepared mappings (i.e. before the beginning of the observation 
process) of all possible measurements onto the estimates of interest. When a PSOOP is known, the 
observation can be conducted (that is, estimates of the vector z obtained) while the measurements are 
in progress. To that end it suffices, at each instant of time x ~ Th, having conducted the next measurement 
y('), to construct the vectory~(.) and substitute it into the functionals (2.3), which gives an actual estimate 
e, (x, 

PSOOPs are analogues of positional solutions of optimal control problems (optimal feedback control). 
In control theory, positional solutions using modern measurements of states are implemented through 
closed-loop control systems, with feedback based on states. PSOOPs are used in control based on 
incomplete and/or inaccurate measurements and are implemented using part of the closed loop. In the 
remaining part of the loop the system is controlled on the basis of the estimates obtained in the first 
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part. In combination, both parts of the closed loop implement feedback control based on output. As in 
the case of optimal feedback control, construction of the PSOOP (2.3) in a closed loop is impossible for 
non-trivial cases, that is, the principle of optimal observation over a "closed" loop is unrealizable. To 
implement PSOOPs, therefore, appeal must be made instead to the principle of real-time optimal 
observation, which is an analogue of the principle of real-time optimal control described in [11]. In real- 
time optimal observation, the functionals (2.3) are not set up in advance, but the desired estimates are 
computed in the observation process itself, as measurements are received. 

Real-time optimal observation is based on the following analysis. 
Suppose a PSOOP (2.3) has been constructed. It is based on the mathematical model (1.1), but is 

intended, of course, for its physical prototype. Let us assume that the behaviour of the latter is described 
by an equation 

Yc = A ( t ) x  + w (2.4) 

where w is a collection of terms describing the inadequacy of the mathematical model and perturbations 
affecting the physical system. 

Suppose the actual observation process has produced a parameter vector co* of the initial state 
(unknown to the observer), which generated the initial statex*(t,)  = x0 + Go)*. This initial state of the 
real physical prototype (2.4), the unknown perturbations w*(t) ,  t ~ T, and the errors ~*(t), t ~ Th in the 
work of the measuring instrument generate a trajectory x* ( t [ t , ,  x* ( t , ) ) ,  t ~ [t,, ~[, of system (2.4) and 
the signal measured up to time "c, sayy*(.). A solution of problem (2.2) for the position ('c,y*(.)) is given 
by the functionals (2.3) which, along the signal 

yx (t)  - c ' ( t ) x * ( t [ t . ,  x * ( t , ) )  + { * ( t ) ,  t ~ Th('~ ) - -  {t , ,  t .  + h . . . . .  x} 

satisfy the identities 

x°('c, y*(.))  - x o + Go)°('c, y*(.)),  z°(x, y*(.))  = H ( x o ( X . )  + ~(x,)ol°(x,  y*(.))) 

&(~, y , ( . ) )  , o . 
= q z  ('C, yx(.)),  X~ T h 

Hence it is obvious that in the actual observation process the PSOOP (2.3) is not used in its entirety 
(for all y~(.) ~ Y('c), "c ~ Th); only its values along the signals y~*('), z ~ T h produced by the measuring 
instrument are needed. 

The functions 

to*(x)  co°(~, * = yx ( . ) ) ,  x*('c)  = x° ( ' c ,y* ( . ) )  

Z*(X) = Z°('~,y*(')), ~*(X) = (t('C,y*x(.)), "¢ ~ Th 

will be called a realization of the PSOOP in the specified observation process. A device capable for 
z ~ Th of computing the quantity z* ( z )  for every actual position (% y*(.)), in a time s(z) not exceeding 
h, will be called an optimal estimator implementing real-time positional observation. Thus, the problem 
of optimal positional control has been reduced to constructing an algorithm for the operation of an 
optimal estimator. 

3. C O N S T R U C T I O N  OF AN A P O S T E R I O R I  S O L U T I O N  

For an analytical formulation of problem (2.1) we will describe the set Z.  The signal of the measuring 
instrument (1.3) for a parameter vector of the initial state m ~ f~ and error function ~(t), t ~ Th has 
the form 

y ( t )  = c ' ( t ) x ( t )  + ~( t )  = c ' ( t )Xo(t  ) + c'(t)c~(t)O~ + ~( t ) ,  t E T h 

If the measured signal isy(t), t ~ Th, then taking into account the restrictions (1.4), 2 is the set of precisely 
those vectors z that satisfy the relations 

z = H(Xo(X , )  + ~(x,)o~);  

~ ,  <- y ( t )  - c ' ( t ) X o ( t  ) - c ' ( t )dP( t ) tO  <_ ~*, t E Th; ca) E ~'~ 
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Pu tp '  = q'HCffz ,) .  Then problem (2.1) becomes 

p'o~ ° = maxp'0~ 

~ ,  < y( t )  - c'(t)Xo(t ) - c ' ( t )~( t )o l  < {*( t ) ,  t ~ Th; d ,  <ol<_d* 
(3.1) 

where 
0 0 

x = x o + Gco °,  z = I - l ( x o ( X , )  + ¢(x , )o  °) 

Problem (3.1) is an interval linear programming problem with N + 1 fundamental constraints and 
n~o variables. Unlike the general linear programming problem, its elements are dynamic in nature. Below 
we will describe a dual method which is essentially a special rapid dynamic realization of the dual adaptive 
method of linear programming [12]. As in the case of the optimal control problem, the main time needed 
to solve optimal observation problems is spent in integrating the direct system; therefore, as in [11], 
the efficiency of the method is estimated in terms of a basic "time-consumption unit", namely, one 
integration of the direct system over the entire observation interval T. 

The main tool of the dual method is the support - a pair 

K b = {Tb, Jb}, T b c T  h, J b C J  = {1,2 . . . . .  nto}, ITol = IJol 

such that, if the sets Tb and Jb are non-empty, the matrix 

Db = D(Tb, Jb) = ( - c ' ( t )~ j ( t ) ,  j ~ Jb, t ~ T b) 

is non-singular. If the sets Tb and Jb are empty, then Kb is empty by definition. 
In the solution of problem (3.1) one uses, together with the support Kb, certain "associated" elements: 
1. A function of potentials v(t), t • Th: V(t) = O, t • Tn = Th\To: Vb = (V(t), t • T0) - a solution of 

the equation 
! ! 

VbDb = PO, Pb = (Pj, J ~ Jb) (3.2) 

2. A vector of estimates 

8' = p' + ~., v ( t ) c ' ( t ) ~ ( t )  (3.3) 
te T b 

The support components of the vector of estimates are zero: 8j = O,j • Jb. 
3. A vector of pseudo-parameters ~c; its non-support components nj, j ~ Jn = J\Jb are 

nj = d , j ,  if 8 j < 0 ;  ~cj = d*, if 8 j > 0  

K] E [d , j ,  d*],  if 8j = 0; j ~ J ,  
(3.4) 

The support components ~:b = (~:j, J • Jb) are computed from the equation 

VbK b = (~(t) - y ( t )  + c'(t)Xo(t ) + c ' ( t )~(t)Ko,  t ~ Tb) (3.5) 

where 

; ( t )=~, ,  if v(t)<0; ;(t)=~*, 

~(t) • [~ , ,~ ' 1 ,  if V(t) = 0; t •  T b 

~:0 = (K0j = O, j ~ Jb; KOj = ~j, J ~ Jn) 

if v(t) > 0 

4. A pseudo-error function 

~(t) = y ( t ) -  c'(t)Xo(t ) -  c '( t)~(t)~;,  t E T h (3.6) 

Definitions. A support Kb is said to be regular if its associated elements are such that v(t) e 0, 
t •  T a ; S i * O , j • J  n. 
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A support K ° is said to be optimal if, for a certain accompanying pseudo-parameter vector ~: and 
pseudo-error function ~(t), t ~ Th, the following inequalities hold 

d , j<-Kj<-d  7, J ~  Jb; { , -< ~ ( t )< {* ,  t ~  T n 

A pseudo-parameter vector accompanying an optimal support is a solution of problem (3.1). The 
extremal output signal is z ° = H(xo(~,)  + ~(x,)1¢. 

When the dual method is used to solve an optimal a posteriofi observation problem (2.1), the iterations 
begin with an arbitrary (possibly, empty) support K~ and the solution is completed by the construction 
of an optimalsupport  Ky,. Each iteration of the method consists of replacing the "old" support K b by 
a "new" one Kb, for which the inequalityp'~: _<p%: holds. In what follows, for brevity, only the main 
operations of the dual method will he described. They are easily justified on the basis of previous results 
[121. 

A time t ~ Th \{ t . , /*}  will be called a minimum point of the pseudo-error function ~(t), t ~ T h if 
~(t) < ~(t - h) and ~(t) < ~(t + h); it will be called a maximum point if ~(t) > ~(t - h) and ~(t) > 
~(t + h). The set of all extremum points will be denoted by To. 

The following information is stored in the computer memory at the start of each iteration: (1) the 
support Kb, (2) the matrixD(b) - (-c'(t)eP(t), t ~ Tb), (3) the support values of the function of potentials 
Vb, (4) the vector of estimates ~, (5) the pseudostate ~, (6) the set To, and (7) the quantities Xo(t) and 
ap(t), t ~ T O u {t., t*}. 

Using information 1-7 and formula (3.6), compute 

p°(K,) = max{pjo, p(/°)} 

9yo = maxp(~:j, [d. j ,  d*]), j ~ Jb 

9(t °) = maxp(~(t), [~. ,  g*]), t ~ T O u {t. ,  t*} 

(9(c, [a, b]) is the distance from the number c to the interval [a, b]). 
If p (Kb) = O, then Kb is an optimal support. Otherwise, construct the variation of the function of 

potentials, Av(t), t ~ Th, depending on the two cases. 
Case 1. For p0 = pjo: Av(t) = 0, t ~ Tn; A v i D  b = -(ASj, J ~ Jb)', A~jo = 1 if ~¢? > dT; A~jo = -1 if 

~¢jo < d.j0; A8j = O,j ~ Jb\t °. 
Case 2. For 0 ° = p(t°): Av(t) = O, t ~ Tn\t°; Av~Db = Av(t°)(c'(t°)dPj(t°), j ~ Jb)', Av(t°) = 1 if 

~(t °) > ~*; Av(t ~) = -1 if ~(t °) < ~.. 
Find the variation of the vector of estimates 

A S ' =  ~ Av(t)c'(t)~P(t) 

t ~ T b u t o 

Now compute 

6j = -S j /ASj ,  if 8jASj< 0; 6 j  = 0% 

i f( t)  = - v ( t ) / A v ( t ) ,  if v(t)Av(t) < 0 

6(t)  = oo, if v(t)Av(t) > 0; t ~ T b 

if 6jA~j > O; j ~ Jn 

To simplify the derivations, we shall assume that the numbers 6j,j ~ Jn and 6(0, t ~ Tb are different 
and non-zero (the general case was investigated in [12]). Number the finite ones in increasing order: 
0 < ¢31 < ~2 < ... < ~k0. 

Compute 

1 0 [ k +  1 ¢x = - p ( K b ) ;  = o t k + A a  k 

A~x k = ( d * - d , y k ) l A ~ l [ ,  if 6 k = 6 ~  

Act k = ( ~ * - ~ , ) [ A v ( t ~ ) [ ,  if ffk = ff(tk), k = 1 . . . . .  k o 
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A dual step is defined to be a number (~* = (~k. such that ak. < O, ak* + 1 ___ O. 
Depending on (a) c* = or?., (b) c* = a(tk*), construct a new support/£b = {Tb, ]b} 

.k ,  k ,  
la) l"b = Tb, Jb = ( J b \ j  ° ) t o 3  ; lb) l"b=Tb\t  , J b = J b \ j  ° 

k ,  
2a) l"b = T b u t  o , .lb = J b u 3  ; 2b) l"b =(Tb \ t k * ) U t  o , Jb = J b  

To complete the iteration, transform the information 2-7 for the new support K'b. 
The matrix D(b ) in case ta  is not changed; in case lb the row of D(b) corresponding to the instant 

, r 0 0 0 t k s T b is deleted. In case 2 one adds to D(b) a row -c ( t ) ~ ( t  ) corresponding to the time t (the value 
0 0 ~ k ,  k ,  of ~(t  ) is stored in the computer memory, sinc e t ~ To), and in case 2b, in addition, the row-c ( t )qb(t  ) 

is deleted. 
The support values of the function of potentials 9 b and the vector of estimates ~ are recalculated using 

formulae (3.2) and (3.3). Rules (3.4) are used to construct the non-support components of the pseudo- 
parameter vector ~:j,j ~ Jn. System (3.5) is solved to find ~b- 

To correct information 6 and 7, construct the variation of the pseudostate A~c = ~ - ~: and the resulting 
variation of the pseudo-error function A~(t) = -c'(t)~b(t)A~:. Let 

~(t, O) = ~(t) + OA{(t), t ~ T h, 0 >_ 0 (3.7) 

As O varies over the interval [0, 1], the extremum points of the function (3.7) will be displaced from 
extrema ~(t) = ~(t, 0), t ~ Th, to extrema ~(t) = ~(t, 1), t ~ Th. The directions s(t), t s To u {t,, t*}, of 
these displacements are defined as follows: s(t)  = 1 if (~(t  + h)  - ~( t)) / (A~(t  + h)  - A~(t))  < O, s(t)  = - 1  
otherwise, t e To; s ( t . )  = 1, s ( t*)  = -1 .  

Accordingly, for each instant of time t c To u {t., t*}, the following sequence of operations is 
performed. 

1. Compute the number 

O(t )  = - ( ~ ( t  + s ( t ) h )  - ~ ( t ) ) l ( A ~ ( t  + s ( t ) h )  - A~(t)) (3.8) 

2. If 0 < O(t) < 1, then the function (3.7) will have an extremum point t + s( t )h  ~ Th in a small right- 
hand neighbourhood of 0 = O(t). In the set To, replace the time t by t + s(t)h; instead ofx0(t), ~b(t), 
store Xo(t + s ( t )h )  and ~ ( t  + s( t )h) ,  

3. Repeat operations 1 ° and 2 ° for the time t + s ( t )h  (s(t + s ( t )h)  = s( t ) )  until either one of the 
inequalities O(t) >_ 1, O(t) ___ 0, or the condition t + s( t )h  ~ Th is satisfied. The last two cases characterize 
the disappearance of the extremum points of the function (3.7); remove the instant t from the set To 
and erase the quantities Xo(t) and ~(t) from the computer memory. 

Remark. In this paper, the case in which new extrernum points appear in the the interval T is not considered. 
It can be investigated using the extremum points of the function ~l(t) = (~(t + h) - ~(t))/h, t ~ Th\t*. 

The time necessary for an iteration of the method is determined by the length of the maximum 
displacement interval of the extremum points t ~ To. An estimate of its length may be obtained by 
numerical simulation (see below). 

Theorem  [12]. The method is finite if the supports are regular in the iterations. 
A finite modification of the method may be constructed for any problem (3.1) [12]. 

4. I M P L E M E N T A T I O N  OF A P O S I T I O N A L  S O L U T I O N  

According to Section 2, a positional solution is implemented by means of an optimal estimator. Before 
the beginning of the process, it computes an estimate &*(t, - 0) and an extremal output signal 

Z * ( t .  - O) = H(Xo( 'C.)  + cI:~('C,)(o*(t* - 0)) 

using a solution o~*(t. - 0) of the problem 

p'o~ --~ max, co E 

and stores the optimal support K ° (t.  - 0) for further operations. 
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Let us assume that the optimal estimator has been working in an interval [t., z], having computed, 
using the signal y*(.) produced up to then, vectors o*(t), x*(t), z*(t), t ~ Th('C) and estimates &*(t), 
t ~ Th('C). At time z + h the estimator is informed of the measurementy*('c + h) and it must quickly 
evaluate o~*('c + h) ,x*(z  + h),z*('c + h), &*('c + h). 

By assumption, at the previous instant of time x (to be precise, in the time interval ['c, "c + s('c)[), the 
optimal estimator has solved the problem 

p'0~ ~ max 
(4.1) 

~ .  <_ y*( t )  - c'(t)Xo(t) - c '(t)~(t)o~ <. ~*, t ~ Th(X); d ,  _< o) _< d* 

and stored its optimal support K~ ('0 and the corresponding data 2-7. 
At time "¢ + h the estimator solves a problem that differs from (4.1) by the addition of the constraint 

~ ,  <_ y*(x  + h) - c'(x + h)xo(X + h) - c'(x + h)O(x  + h)o~ <_ ~* (4.2) 

To solve problem (4.1), (4.2), the estimator takes as the initial support Kb("C + h) an optimal support 
Kb ° ('C) of problem (4.1). If the inequalities 

~ .  < ~('c + h[Kb('C + h)) < ~* 

are satisfied, then Kb ° (x) is an optimal support for problem (4.1), (4.2). If not, we have 

p°(Kb(X + h)) = p°(~(x + h[Kb(x + h)),  [~.,  ~*]) - h 

Hence, a relatively small number of iterations will suffice to correct the initial support Kb('C + h) and 
obtain an optimal support K ° ('c + h), and in the process the extremum points of the pseudo-error 
function will be slightly displaced. The direct system is iterated over these displacements. Hence it follows 
that the time needed to solve problem (4.1), (4.2) with initial support Kb('C + h) = K ° (x) is relatively 
short. 

It is obviously impossible to find a formula for estimating the time needed for one correction of the 
support in the algorithm for the operation of the optimal estimator. Some idea of the efficiency of the 
algorithm may be derived from the results of a numerical experiment (see the example). 

Remark. In the case in which the mathematical model (1.1) differs from the physical prototype (2.4) (w(t) ¢ 0, 
t ~ T), the observation process may be broken off at some time ~ ~ Th because the constraints of problem (4.1) 
are incompatible. Something similar happens in control theory when classical optimal feedback is used. Elimination 
of this effect requires the construction of a theory of optimal observation using non-deterministic mathematical 
models; this has already been done for optimal control problems. This problem, however, is beyond the scope of 
the present paper. 

Example. Let us consider the problem of the observation of a two-mass oscillatory system (1.1) in 
the time interval T = [0, 3] (Fig. 1) 

)el = X3' X2 ~- X4' 3C3 ---- --Xl "l'X2' 3C4 = O ' lXl - -X2 (4.3) 

Suppose the initial state of system (4.3) is 

xl(0) = 0, x2(0) = 0, x3(0) = c01, x4(0) = 0h 

where co = (oh, o~2) is the parameter vector of the initial state with a priori distribution f2 = {o} ~ R2: 
[ coil < 0.2, i = 1, 2}. (It is anticipated that at the initial time t = 0 the stationary masses may be subjected 
to impacts whose intensity cannot exceed known limit values.) 

Let us assume that the measuring instrument measures the position of the first mass Xl(t) with an 
error 

[~(t)[<0.15, t ~  T h = {0, h, 2h . . . . .  3 - h ,  3}, h = 0.03 

that is, at discrete times t ~ Th the instrument will supply signal valuesy(t) = xl(t) + {(t). We are interested 
in the velocity of the second mass at t = 0, that is, we will estimate the scalar z = x4(0). The a priori 
distribution of the output signal is Z = {z e R: Iz[ < 0.2}. 
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L e t  us assume that the model (4.3) is an exact description of the physical system (w*(t)  - O, t ~ T), 
and that the observation process has produced (unknown) values of the components of the initial state 

x*(0) = -0.05, x*(0) = 0.1 (4.4) 

and the error function 

~*(t) = 0.15sin2t, t~  [0,31 (4.5) 

The solution of the optimal a posteriori observation problem (4.3) produced the following estimate 

-0.0498241 < z < 0.100059 

If q = 1, the time needed to construct an a posteriori solution (the initial support was empty) was 
found to be 0.34. If q = -1, it was 0.36. 

Figure 2 illustrates the a priori (set 1) and a posteriori (set 2) distributions of the components x3(0) 
and x4(0). In Fig. 3 (curve 1) we show the behaviour of the estimate &*('c), z ~ Th for the solution of 
the positional observation problem with q = 1. 

While observing system (4.3), having computed the initial state (4.4) and error function (4.5), the 
0 0 0 following optimal supports K b ('c) = { T~ ("c), J~ (x)} were obtained 
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r ° (x)  = 0 ,  x~  [0,1.71[ 

T°(x) = {x}, J°(x) = {1}, x = [1.71, 1.89[ 

T°(x) = {t l,x}, J°(x) = {1,2},  %~ [1.89,2.4[ 

where t 1 is an extremum point of the function z(t), t ~ Th(x), having been displaced from ta = 0.69 to 
ta = 0.78; Tb = {0.78, 2.37}, Jb = { 1, 2}, X ~ [2,4, 3.0]. Since the optimal support of the problem solved 
by the optimal estimator has not been changed over the intervals [0, 1.71[ w [2.4, 3.0], the time factor 
needed to correct the data, that is, the length of the interval in which the direct system (1.1) and system 
(1.2) are integrated to construct ~(z + h), divided by the length of the observation interval T, equals 
0.01. Over the interval [1.71, 2.4[ the time factor comprises that needed to compute ~(x + h) (it is equal 
to 0.01) and that needed to construct the numbers (3.8), which is also 0.01, that is, the total time factor 
is 0.02. At times x = 1.77, x = 1.83, x = 1.95 the extremum point t 1 is displaced by h to the right. Thus, 
the time consumed at these instants of time is represented by the time factor, which is equal to 0.03. 
If we let T denote the time necessary for this microprocess for a single integration of system (4.3) over 
the interval [0, 3], then, if 0.037 < h, the microprocess may be used to implement the positional solution 
of the optimal observation problem for system (4.3). 

5. O P T I M A L  O B S E R V A T I O N  U N D E R  C O N D I T I O N S  
OF I N E R T I A L  I N T E R F E R E N C E  

Let us consider the optimal observation problem formulated in Section 2 on the assumption that 

n o = m = n ,  G =  E, H = E  

(the unknown parameter vectors co and z are identical with the initial state x( t , )  = Xo, Xo ~ Xo = ~2). 
We will modify the class of functions that describe the measurement errors ~(t), t ~ T, by adding, 

besides inequalities (1.4), the following inequalities 

~l, < ( ~ ( t + h ) - ~ ( t ) ) / h < ~  *l, t ~  Th\t* 

which characterize the inertial property of the error-measurement function. 
Let 

yl(t)  = (y( t  + h) - y( t ) ) lh  

(c '~) l ( t )  = (c'(t + h ) ~ ( t  + h ) -  c ' ( t )~( t ) ) lh ,  Th\t* 

Then we obtain the following analytical form of the set 2~o 

Xo = {x~  Xo: ~ .  < y ( t ) - c ' ( t ) d p ( t ) x < ~ * ,  t ~  T h 

~l, < y l ( t ) - ( c ' d p ) l ( t ) x < ~  .1, t ~  Th\t* } 
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The functional form of the optimal a posteriori observation problem is 

^1 < , 
ot = p'x ° = maxp'x, ~ ,  - y(t) _ - c  (t)~P(t)x < ~* - y(t), t • Th 

(5.1) 
{l . - -y l ( t )<--(C'~) l ( t )x<-{*l--y l ( t ) ,  t~  Th\t*, d . < - x < d *  

We will now describe the main elements of the dual method for solving problem (5.1). A support of 
problem (5.1) is a triple Kb = {T0, T~, Jb} such that T0 C Th, T~ C Th\t*, J0 C J = {1, 2, ... , n}, 

Do) is non-singular, where l T0] + I rll  = IJbl and the matrix D1 

1 = (-(c 'dp)~(t) , j•  Jb t •  T~) D o = (-c'(t)dPj(t), j •  Jo, t •  To), D o 

The elements associated with the support Ka are as follows. 
1. A function of the potentials v(t), t • Th; vl(t), t • Th\t*: 

V(t) = 0, t •  r .  = r . \ r 0 ;  v!(t) = 0, tE T~ = Th\{t*,T~} 

Vb = (V(t), t • TO), V 1 = (vl(t), t • T 1) is a solution of the equation 

Vb/)b + Vb /)b = Pb, Pb = (P j, J • Jo) 

2. A vector of the estimates 

8 ' =  p'+ Z v( t )c , ( t )~( t )+ Z vl( t ) (c '~) l ( t )  
1 tE  T b t ~  T b 

3. A pseudostate ~:; the non-support components ~¢j, j • Jn, are given by formula (3.4); the support 
components v,+ = (~j, j • Jb) are found from the system of equations 

Dbl % = (~(t) - y(t) + c'(t)dP(t)v; o, t • TO) 

I 
D b W ,  b = ( ~ l ( t )  - yl(t) + ( C ' ¢ I ) ) l ( t ) l % ,  t E Tb l) 

where 

~(t) = { , ,  if V( t )<0;  ~(t) = {*, if 

~(t) • [~, ,  { '1 ,  if v(t) = 0; t • T b 

~l(t ) = {1,, if v l ( t ) < 0 ;  ~l(t ) = {,1, 

1 ~l(t) e [{1 ,{ ,1] ,  if vl(t)  = 0; t~  T b 

K 0 = (I¢Oj = O, j ~ Jb; l¢'Oj = lCj, j • Jn) 

V(t) > 0 

t • Th\t* 

if vl( t)  > 0  

Definition. A support K ° is said to be optimal in problem (5.1) if, for certain associated pseudostates 
~: and pseudo-error functions ~(t), t e Th, ~1(t), t • Th\t*, the following inequalities hold 

d, j<lcj<d~. ,  J~  Jb; { , < ~ ( t ) < ~ * ,  t •  T,; {~,<~l(t)  N~*l, t •  T~ 

The pseudostate vector associated with an optimal support is a solution of problem (5.1): x ° = ~:. 

4. A pseudo-error function 

~(t) = y ( t ) - c ' ( t )~ ( t )K ,  t~  Th; ~l(t) = (~ ( t+h) -~ ( t ) ) l h ,  
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An iteration of the dual method for solving problem (5.1) is constructed by analogy with the algorithm 
outlined in Section 3, taking into consideration the new definition of the support Kb, the additional 
associated elements, and the rules for constructing them. Note that when the iteration is implemented, 
one processes not only the extremum points of the pseudo-error function ~(t), t ~ Th, but also its points 
of inflection, that is, the extrema of the function ~l(t), t ~ Th\t*. 

Example. Consider the example of Section 4 with the additional condition that the error function is 
inertial: 

~(t), t ~ T h : I(~(t + h) - ~(t))lh[ < 0.3 

Note that, in this example, we are considering the optimal conditionally-relative observation problem 
with inertial interference. Relying on the results of Sections 3 and 5, one can readily construct an algorithm 
for the a posteriori solution of such problems. 

The new a posteriori distribution of the vector (x3(0), x4(0)) is shown in Fig. 2 (set 3). According to 
the results obtained by solving the a posteriori observation problem, the output signal z satisfies the 
inequalities 

0.0598594 < z < 0.100059 

The time factor needed is 0.44 if q = 1 (the initial support is empty); if q = -1 it is 0.78. 
In Fig. 3 (curve 2) we show the behaviour of the estimate &* ('c), x s Th during the positional solution 

of the problem. The time factor needed to construct &* ('0 for each x ~ Th was at most 0.03 (as in the 
example with non-inertial interference), since the single point of inflection of the function ~(t), t e Th 
appeared at time x = 1.56 and did not change thereafter during the iterations. 

6. O P T I M A L  OBSERVATION U N D E R  C O N D I T I O N S  OF NOISY 
F I N I T E L Y - P A R A M E T R I C  I N T E R F E R E N C E  

Let the function ~(t), t ~ Th, have the form 

S* 

~(t) = Z ~s~s(t) +~o(t) (6.1) 
s = l  

where ~,  s ~ S = {1, 2 . . . . .  s*}, are unknown parameters, xs(t), s s S, t s T, are known continuous 
functions and ~0(t), t ~ T, is an unknown piecewise-continuous function characterizing the 
interference. 

We will assume that the components of the error function obey the constraints 

~ , s < ~ s < ~ * s , s E  S; < t < *, ~ , o -  ~o( ) - ~o t E T h 

The functional form of the optimal a posteriori observation problem with error function (6.1) is 

p'x ° = maxp'x,  ~ , o -  y( t )  < - c ' ( t )dP(t)x-  ~_, ~,Zs(t) < ~* - y(t) ,  
s = l  

a, <_x<_a*, s 

t~  T h 
(6.2) 

Asupport  ofproblem (6.2) is atripleKb = { Tb, Jb, Sb } ( Tb C Th, J b C J, S b C S, I Tb l = IJbl + [Sb[) 
such that the matrix ]lDb, Qb II is non-singular, where 

D b = ( -c ' ( t )dPj ( t ) , j~  Jb, t ~  Tb), Qb = ( - Z s ( t ) , s ~  S b , t~  Tb) 

The support Kb is associated with the following elements. 
1. A function of the potentials v(t), t ~ Th: v(t) = 0, t e Tn = Th\Tb; vb = (v(t), t s Tb) - a solution 

of the equation 
! ! 

V't, Db = Pb, vbQb = O, Pb = (Pj, J ~ Jb) 
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2. A vector of the state estimates 

5' = p'+ 2 v(t)c'(t)~(t) 
t ~  T b 

and a vector of the estimates of the error function parameters 

~ = y.  v(t)Xs(t ), s~ S 
t E  T b 

3. A pseudostate ~c ~ R n and a vector of the pseudoparameters ~ ~ R s*. The non-support components 
tc/,j ~ Jn, are given by formula (3.4); the non-support components ~, s ~ S~ = S~Sb, have the form 

; , = ~ , ~ ,  if fi~<0; ;~=~*,  if fi~>0; ; , ¢ [~ .~ ,~* ] ,  if fi}=0; 

s~ S, 

and the support components % and ~b = (~, s ~ S) are computed as a solution of the equation 

Dbl% +Qb~b = (~(t)-y(t)+c'(t)O(t)Ko+ ~ ~sXs(t), t e  Tb) 
S E  S n 

where 

~(t) = ~.0, if v ( t )<0 ;  ~(t) = ~ ,  

~(t) e [~,0, ~ 1 ,  if v(t) = 0; t e T b 

if v(t) > 0 

4. A pseudo-error function 

3:* 

~(t) = y( t )-c ' ( t )~( t)~-  2 ~sZs(t)' t~ T h 
s = l  

Definition. A support K ° is said to be optimal in problem (6.2) if, for certain elements ~c, ~, s ~ S, 
and ~(t), t ~ Th, associated with it, the following inequalities hold 

d.j<lcj<d~, J~ Jo; ~.s<~s<~*s, s~ So; ~ , 0 < ; ( t ) < ~ ,  t~ Tn 

A pseudostate vector associated with an optimal support is a solution of problem (6.2): x ° = re. 
Subject to these new definitions of the support Kb, the optimal support K ° and the associated elements, 

one can construct a dual solution algorithm for problem (6.2), by analogy with the method proposed 
in Section 3. 

As is obvious from the material of Section 4, the algorithm for the operation of an optimal estimator 
relies on the dual method for constructing an a posteriori solution, using the latter at each stage to 
correct the optimal support constructed at the preceding stage. Therefore, based on the methods for 
constructing an a posteriori solution of optimal observation problems under conditions of inertial and 
noisy finitely-parametric interference, it is not difficult, following the material of Section 4, to describe 
algorithms for the operation of optimal estimators for these problems. 

Example. Suppose the possible error functions in the example of Section 4 are 

~(t)=~o(t)+~lsin(2t)+~2cos(4t); I~0( / ) l  ___ 0 . 0 1 ,  I ,l_<0.as, i =  1,2 

During the observation process, the same error function was implemented as in the above examples. 
Solution of the a posteriori observation problem produced the following estimate for the velocity of 
the second mass 

0.086867 < Z < 0.110098 
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The  t ime fac tor  n e e d e d  to  cons t ruc t  the  solut ion,  for  q = 1, was equa l  to  0.86. 
F igure  4 i l lus t ra tes  the  a pos te r io r i  d i s t r ibu t ion  of  the  c o m p o n e n t s  of  the  ini t ial  s ta te  x3(0), x4(0). 

Curve  3 in Fig. 3 r ep re sen t s  the  es t imates  ~*(x), x ~ Th ob ta ined  dur ing  the i m p l e m e n t a t i o n  of  a 
pos i t iona l  solut ion.  T h e  t ime fac tor  n e e d e d  to cor rec t  the  suppor t s  dur ing  the o p e r a t i o n  of  the  op t ima l  
e s t ima to r  was at  mos t  0.15. 
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